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How to use directed acyclic graphs: guide for clinical researchers
Timothy Feeney,1 Fernando Pires Hartwig,2,3 Neil M Davies4,5,6

Directed acyclic graphs are commonly 
used to illustrate and assess the 
hypothesised causal mechanisms in 
health and social research. These 
graphs can illuminate investigators’ 
assumptions and help clearly describe 
each possible explanation for 
associations observed in data given 
researchers’ assumptions, ranging from 
causal effects to confounding and 
selection bias, and thereby help 
identify variables that can be used to 
reduce or overcome bias. This article 
explains how to construct, interpret, 
and present directed acyclic graphs as 
part of clinical research studies and 
how they can help communicate a 
study’s strengths or limitations.

Causal directed acyclic graphs (DAGs) are a type of 
graph that illustrates an assumed causal structure 
between variables of interest. These graphs can 
illustrate assumed links between possible causes (eg, 
a behaviour or a medical intervention; referred to in 
this article as exposure) to possible consequences 
(eg, presence or absence of disease; referred to in 
this article as outcome).1 While causal graphs have 
long been used,2 DAGs have a relatively short history 
in epidemiological research3 but have become 
widespread as a way to think about the causal structure 
underlying an exposure-outcome association.4 5 DAGs 
can be useful for many purposes, such as helping 
to identify confounders,6  7 evaluating potential 
selection bias,8  9 and understanding the roles that 
measurement error10 11 and missing data12 might have 
in effect estimation. Recent papers have highlighted 

how DAGs can improve epidemiological13-15 and 
clinical studies.16-19 However, they can also aid in 
understanding descriptive studies (eg, estimating 
the incidence of disease) and prediction studies (eg, 
modelling a patient’s risk of disease). These graphs 
can also help communicate the assumptions necessary 
to interpret results to collaborators, researchers, 
reviewers, readers, and editors.

Despite their potential utility, wide variation in 
the use of DAGs can limit their effectiveness. In a 
review of 234 articles using DAGs, researchers found 
increasing use of these graphs but a wide variation 
in how they were used,7 with relatively few studies 
reporting key information. Improper development and 
use could result in failure to reap the benefits of using 
these graphs. Here, we explain why DAGs are helpful 
for biomedical research, highlight some limitations 
of these graphs, and suggest how to construct and 
disseminate a DAG collaboratively when conducting 
clinical research. While these graphs can be useful 
in many scenarios, we focus here on observational 
research, where the goal is to estimate the total effect 
of an exposure on an outcome.

Definition of directed acyclic graphs
DAGs are founded in graph theory and consist of a 
few basic elements, which can be illustrated with a 
simplified example investigating the effect of exposure 
to heavy alcohol use on the outcome of all cause 
mortality (fig 1). Figure 2 includes a glossary of terms 
and illustrations of the basic components of DAGs. Box 
1 provides additional concepts and explanations on 
how these graphs can be used and interpreted.20

A DAG comprises nodes and edges. Nodes represent 
the variables in a study. In figure 1, the nodes are 
heavy alcohol use (the exposure), death (the outcome), 
and socioeconomic position (the confounder; fig 2 
lists detailed definitions of the different aspects of 
DAGs). Nodes are connected by arrows, also known as 
directed edges, which are unidirectional and indicate 
the direction of a causal effect between two nodes. For 
clarity, we refer to edges as arrows. Specifically, an 
arrow indicates a direct causal effect not mediated by 
other variables in the DAG (however, such effects can 
also be, and likely are, mediated by other variables 
not included in the graph), with the direction of the 
arrow indicating causal ordering (and thus temporal 
ordering). The node at the tail of an arrow causes the 
node at the head of the arrow, which implies that, 
for at least one person in the studied population, an 
intervention that changes the variable at the tail would 
also result in a change in the variable at the head.

Arrows do not split or merge and should only 
originate from and end at a node; arrows should not 
start or end on the midpoint of another arrow. DAGs 
cannot indicate the magnitude of the effects, the form of 

SUMMARY POINTS
Directed acyclic graphs can help guide study design, data collection, and 
analyses assessing the causal effect of an exposure on an outcome (eg, a 
behaviour or a medical intervention) and outcomes (eg, presence or absence of 
disease)
These graphs can illustrate potential sources of bias, determine key variables 
(observed or unobserved), and ascertain which variables should (and should 
not) be selected as covariates to control for these sources of bias
Causal diagrams should be constructed based on expert clinical and subject 
matter knowledge
This article provides a glossary of commonly used terms in directed acyclic 
graphs
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the effect (eg, linear, quadratic) and whether the effect 
varies between individuals. The DAG in figure 1 has an 
arrow from the socioeconomic position to the heavy 
alcohol use node, which implies that socioeconomic 
position has a direct causal effect of unspecified 
direction, magnitude, and form on heavy alcohol use 
for at least one individual (and, if the effect exists for 
multiple individuals, its direction, magnitude, and/or 
form might differ between them). 

Two nodes connected by a series of arrows oriented 
in the same direction imply an indirect causal effect. 
For instance, socioeconomic position has a direct 
causal effect on death in figure 1A, whereas it also 
has an indirect causal effect on death in figure 1B, 
mediated by a sedentary job. The total causal effect of 
socioeconomic position on death combines all these 
individual causal effects. 

Finally, DAGs are acyclic, meaning that no loops 
of arrow-node combinations should lead out from 
one node and back to the initial node. The acyclic 
nature is because causal ordering implies temporal 
ordering—the variable at the tail of an arrow must 
come temporally before the variable at the head of 
that arrow. Thus, a graph with cyclical loops would 
imply that a variable in the future is affecting its past 
self. Accommodating time requires multiple nodes to 
represent different time points and avoid cycles; this 
concept is discussed in more detail below.

Whether a variable is an outcome, exposure, or 
confounder depends on the research question of 
interest (eg, socioeconomic position in figure 1 could 
be an exposure in another study). The validity of the 
conclusions obtained from a DAG depends on the 
plausibility of the assumptions encoded in the graph. 
For example, socioeconomic position is an assumed 
confounder of the exposure-outcome association 
in figure 1; however, this is not proof that it is a 
confounder in the study but merely a statement of the 
researchers’ assumptions. Once the set of assumptions 
is given in the structure of the DAG, conclusions from 
the graph can be inferred. Therefore, the crucial step 
is drawing out the DAG, which is when subject matter 
knowledge is incorporated into the graph. Below, we 
provide general guidance on how to draw a DAG.

Use of directed acyclic graphs in clinical research
DAGs are useful because they force researchers to 
make explicit assumptions about the causal structure 
underlying the associations between variables. 
Therefore, DAGs can identify the variables that should 
be conditioned on and, equally importantly, those 
that should not be conditioned on according to the 
researchers’ assumptions.21 22 Below, we describe how 
researchers can use DAGs to identify and describe 
the role of different potential variables in analyses: 
the exposures, outcomes, confounders, minimum 
sufficient adjustment sets, mediators, selection, 
colliders, and effect modifiers.23 24

Identifying confounders and minimally sufficient 
adjustment sets
DAGs can identify confounders and minimally sufficient 
adjustment sets (box 1). Confounders are variables 
that lay on a confounding path, which is a path that 
includes common causes of the exposure and outcome 
nodes in the graph. This path might be as simple as a 
node with arrows going directly into the exposure and 
the outcome in the DAG (ie, socioeconomic position is 
a confounder and a direct common cause of exposure 
and outcome in fig 1A). A confounder might also be a 
node on a path that includes a common cause of the 
exposure and outcome. For example, in figure 1B, 
socioeconomic position is a confounder even though 
it indirectly causes death through the sedentary job 
node. Further, having a sedentary job is a confounder 
because it is on a common cause path that leads to the 
outcome and is connected to the exposure through 
its direct cause, socioeconomic position. These 
confounding paths create what are sometimes referred 
to as backdoor paths, even though not all backdoor 
paths are confounding paths (eg, they can arise by 
conditioning on a collider, a concept that we explain 
below). 

Confounders induce an association between the 
nodes they cause, which could lead to bias when 
the goal is to estimate the causal effect of one node 
on another. For example, in figure 1, socioeconomic 
position is a confounder of the association between 
heavy alcohol use and death. This confounding means 

Sedentary job

Death
(outcome)

Heavy alcohol use
(exposure)

Socioeconomic position
(confounder)

Death
(outcome)

Heavy alcohol use
(exposure)

Socioeconomic position
(confounder)

Fig 1 | Example of confounding shown in a directed acyclic graph with exposure to heavy alcohol use, outcome of 
death, and confounder of socioeconomic position. Top: socioeconomic position is shown as a confounder because it is 
a common cause of the exposure and outcome. Bottom: a sedentary job is shown as a confounder, owing to being on a 
confounding path between the exposure and outcome
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that the crude (eg, not accounting for confounding by 
socioeconomic position) association of heavy alcohol 
consumption and death will be a biased estimate of the 
causal effect of heavy alcohol consumption on death. 

A minimally sufficient adjustment set is a group 
of measured variables that is sufficient to remove 
bias due to confounding, leaving only the causal 
paths from the exposure to the outcome (ie, all paths 
formed by arrows oriented in the same direction from 
exposure into outcome).4  15 This set is considered 
minimal because removing any variable from it would 

result in residual confounding. Minimally sufficient 
adjustment sets can be found even if relevant variables 
were not measured.25 For instance, consider figure 
3, which adds an unmeasured variable for dietary 
quality to figure 1. Dietary quality is a common cause 
of both heavy alcohol consumption and death, and 
the DAG indicates that dietary quality would need 
to be conditioned on; otherwise, there will be a 
confounding path between the exposure and outcome. 
Here, we used conditioning to refer to adjusting for a 
variable (eg, by including it in an outcome regression 

ColliderOutcome

Mediator

ExposureConfounder

Term Definition Visual depiction on directed acyclic graph

Causal directed 
acyclic graph 
(DAG)

Node(s)

Directed 
edge(s) or 
arrow

Confounder

Mediator

Indirect effects

Direct effects

Collider

Minimally 
sufficient 
adjustment set

Selection bias

Graphical depiction of the assumed causal connection between the exposure 
or treatment of interest, outcome of interest, and variables that have an 
assumed direct causal effect on the exposure and outcome while also 
including connections between the variables included in the DAG

A variable in a DAG. One node represents each variable at each time point

A connection from one node to another typically depicted as an arrow. The 
edge is unidirectional and indicates the direction of causation between two 
nodes

A variable on a confounding path that links the exposure and outcome. Can 
be a single node that is a common cause of both the outcome and the 
exposure or treatment. Every node on a confounding path is also a 
confounder. For example, a cause of the outcome that is affected by a cause 
of the exposure, or a cause of the exposure that is affected by a cause of the 
outcome

A variable on at least one causal path between the exposure or treatment 
and the outcome

Effects are mediated, indirectly, from exposure to outcome through a 
definable mediator variable

Effects directly from exposure to outcome without mediation through an 
intermediate variable

A variable that is a common consequence of two variables that, if 
conditioned on (eg, through regression adjustment, stratification, or 
matching), can open a non-causal path of association between the exposure 
or treatment and the outcome of interest

The minimal set of variables needed to adjust for potential bias
 

When the study population selected differs from the target population, which 
can be represented in a DAG by including a node denoting inclusion into the 
study. One type of selection bias is caused by conditioning on a collider (see 
figure for Collider above). See Lu et all for extensive discussion and graphical 
description9 

ColliderOutcome

Mediator

ExposureConfounder

ColliderOutcome

Mediator

ExposureConfounder

ColliderOutcome

Mediator

ExposureConfounder

ColliderOutcome

Mediator

ExposureConfounder

ColliderOutcome

Mediator

ExposureConfounder

ColliderOutcome

Mediator

ExposureConfounder

Fig 2 | Glossary of terms used in studies with directed acyclic graphs
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model, matching, or stratification). Thus, because 
socioeconomic position and dietary quality are 
confounders and conditioning on them is sufficient 
to remove confounding bias, a minimally sufficient 
adjustment set for the DAG in figure 3 is socioeconomic 
position and dietary quality. The confounding path due 
to dietary quality can be blocked by conditioning on it. 
In this case, the confounder would either need to be 
measured, or if unmeasured it would need a sensitivity 
analysis performed using quantitative bias analysis 
to evaluate how much the bias from this confounder 
affects the results.

These examples illustrate how using DAGs assist 
in making causal assumptions explicit and aid in 
identifying the potential adjustment sets to mitigate 
bias. Importantly, there might be no minimally sufficient 

adjustment sets containing only measured variables. 
For instance, in figure 1B, there are two minimally 
sufficient adjustment sets, each comprising only one 
variable: (1) socioeconomic position and (2) sedentary 
job. Therefore, even if the actual common cause 
between exposure and outcome (here socioeconomic 
position) had not been measured, it would still be 
possible to remove confounding bias by adjusting 
for sedentary job. However, in figure 3 there is only 
one minimally sufficient adjustment set containing 
socioeconomic position and diet quality—there is no 
alternative set to get around the need to condition 
on these variables. Detecting these situations where 
requisite variables might be missing from the data or 
unmeasured aids researchers in assessing the likely 
bias in their results, designing sensitivity analysis, 

Box 1: Guide to use and evaluate directed acyclic graphs

General considerations and rationale
• Were the directed acyclic graph(s) and analysis pre-registered? Pre-registration helps prevent p-hacking and avoids building a directed acyclic 

graph based on available data instead of the assumed data-generating mechanism, making the paper’s inferences more reliable.
• Is the directed acyclic graph reasonable? Does it include all the relevant relations, and have confounding, selection and other sources of bias been 

considered? If the graph is not reasonable, or not all likely sources of bias have been considered, what nodes and/or edges should be added?
• Are there aspects of the graph that suggest additional analyses that can help evaluate whether a potential source of bias will likely affect the results 

(eg, quantitative bias analysis if the directed acyclic graph suggests unmeasured confounding) and corresponding inferences?
Suggested steps to building a directed acyclic graph and specific questions for checking
1. Identify the target population and define the research question, precisely defining the exposure and outcome of interest:

 ○ Is the definition of exposure and outcome precise enough to evaluate the question of interest?
 ○ If not, can the definitions be made more precise? Will this require adapting the original research question?

2. Identify all possible variables that cause at least one of the following variables: the exposure, the outcome, or selection into the study by reviewing 
the literature and discussing it with experts in the subject matter, including those familiar with constructing directed acyclic graphs:

 ○Have variables been included even though they are likely to be unmeasured or unmeasurable?
 ○Has a sufficient and replicable literature search been performed to understand the relevant connections between variables?
 ○Have substantive experts been involved?
 ○Have additional variables with direct effects on any pair of the variables identified as described above also been included?
 ○Have all meaningful connections between any two pairs of variables been included?
 ○Have omitted variables and connections been well motivated?

3. Iterate on the directed acyclic graph with additional experts until consensus is reached; include the consensus graph in any pre-registration:
 ○Are all experts in agreement with the graph constructed?
 ○ If not, have areas of disagreement identified a set of candidate graphs that can be used to guide sensitivity analysis?
 ○Has the graph been included in pre-registration documentation?

4. Identify variables for data collection or the appropriate dataset based on the consensus directed acyclic graph analysis methods based on the 
graph: 

 ○Have the necessary confounding variables been included in the graph?
 ○Have potential biases from conditioning on a mediator or collider been considered?
 ○ If using data that have already been collected, have variables that lead to selection into that data been considered?

5. Choose analysis methods, measures of the outcome and exposure, and covariates based on those defined by the research question and the 
consensus directed acyclic graph.

6. Based on variables that are unavailable or prone to measurement error, identify sensitivity analyses that can evaluate the impact of unmeasured 
variables and measurement error:

 ○Have all unmeasured and potentially unidentified variables been considered?
 ○Have causal mechanisms been considered between unmeasured, potentially unidentified, and potentially mismeasured variables?
 ○Has the mismeasurement of variables been considered?
 ○Have sensitivity and quantitative bias analyses been considered to deal with unmeasured, unidentified, and mismeasured variables?

7. Include the directed acyclic graph in published works and refer to the graph when describing adjustment sets:
 ○Has a complete graph been included in the main document or the supplement in the publication?
 ○Has the analysis been explicitly guided by the graph? 
 ○Has the code to facilitate reproducibility been included? 

4 doi: 10.1136/bmj-2023-078226 | BMJ 2025;388:e078226 | the bmj
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and considering alternative estimation methods (eg, 
instrumental variables or negative controls).26

Identifying mediators
DAGs can help identify mediators (fig 1).21  22 
Conditioning on mediators can bias estimates of the 
total effect of an exposure on an outcome because 
it will block the mediated (indirect) effects.27 For 
example, in figure 4, heavy alcohol use not only affects 
mortality but also affects fast food consumption, 
which in turn affects mortality. Thus, the total effect of 
heavy alcohol consumption is partly due to its direct 
effects (illustrated by the arrow from heavy alcohol use 
to death) and partly due to the indirect effects from 
heavy alcohol use to fast food consumption to death 
(the arrows from heavy alcohol use to smoking to 
death). From this, we can conclude that conditioning 
on fast food consumption will potentially lead to bias 
if the goal is to estimate the total effect of heavy alcohol 
consumption on mortality. Moreover, conditioning 
on a mediator can lead to collider bias (see below). 
Additional considerations are important when 
conditioning on a mediator (eg, when the goal is to 
estimate direct effects), which are beyond the scope of 
this manuscript.28

Identifying colliders and selection bias
DAGs can aid in the identification of variables impacting 
selection (fig 1). Selection bias might occur whenever 
the estimated causal effect in a population sample 
differs from the true causal effect in the population 
of interest as a result of selecting a sample from the 
population of interest.9 Potential sources of selection 
bias include selection into the study (ie, eligibility 
criteria that differ across groups); missing data after 
selection into the study, which could happen because 
of loss of follow-up or non-response to questionnaire 
sections; intentional analytical stratification or 

restriction (eg, for estimation of subgroup specific 
effects). One specific form of selection bias relates to a 
node caused by two other nodes (ie, having two or more 
arrows pointing into it), which is known as a collider. 
If the exposure-outcome association is conditioned on 
such a variable, it can induce spurious associations, 
known as collider bias.8  21 More recently, analyses of 
SARS-CoV-2 have been prone to this bias and are a 
poignant reminder of its importance.29 30 Importantly, 
DAGs can help to identify colliders, which should 
generally not be conditioned on and can also help 
identify variables that can help ameliorate the bias 
from conditioning on a collider when conditioning on 
a collider is unavoidable (eg, when selecting a sample).

The example in figure 5 illustrates the effect of heavy 
alcohol use on all cause mortality, but is restricted to 
people aged 65 years and older. A selection node has 
been added, along with a node for age, which is a 
confounder. Many factors will influence the selection 
of this study; for example, to live to 65 years old, 
participants would have needed to live healthily and 
by definition not have died. Moreover, those that drink 
alcohol heavily are potentially less likely to end up in 
a research study. These variables will affect whether 
participants are selected, which suggests that there 
is an arrow leading from age, heavy alcohol use, 
and death into selection. Selection into the study 
is, therefore, a collider of the exposure-outcome 
association, leading to a biased estimate of the causal 
effect of the exposure on the outcome.

DAGs have many additional uses. For instance, 
these graphs can describe assumptions regarding 
measurement error and its causes, thus helping to 
understand information bias and identify mitigation 
strategies.10 They can also be extended to conceptualise 
potential effect modifiers.23 DAGs can also be applied to 
time-varying exposures, outcomes, and covariates and 
can describe their potentially complex mechanisms, 
such as past and current smoking.31

The use of DAGs to understand the impact of 
time-varying variables includes the identification of 
covariates to adjust for time-varying confounding 
when estimating the effect of exposure over multiple 
time points. For example, when investigating the 
influence of heavy alcohol use on death, using data on 
a friend’s heavy alcohol use at baseline and at a later 
time point and smoking at two later time points can 
help understand the seemingly cyclical or apparent 

Diet quality (unknown or
unmeasured confounder)

Death
(outcome)

Heavy alcohol use
(exposure)

Socioeconomic position
(confounder)

Fig 3 | Example of unmeasured confounding in a directed acyclic graph from figure 1 with an additional unmeasured 
confounder: diet quality. In this case, diet quality is unmeasured in the data but is a common cause of heavy alcohol 
use and death

Socioeconomic
position

(confounder)

Heavy
alcohol use
(exposure)

Fast food
consumption

(mediator)

Death
(outcome)

Fig 4 | Example of mediation shown in a directed acyclic graph. Fast food consumption 
is based on a mechanism by which the effect of heavy alcohol use on death is mediated
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bi-directional causal structure. We can use a DAG to 
illustrate the assumed causal mechanisms between 
these variables over time and, from these assumptions, 
select covariates for confounding adjustment when 
estimating the effect of sustained heavy alcohol use 
over time (supplemental fig 1).

Implementing directed acyclic graphs in clinical 
research
Based on previously published recommendations7 
(summarised in box 2) and our experience with DAGs, 
we now suggest a guideline of seven steps for drawing 
and using these graphs to improve study design and 
data analysis, and we provide a checklist to evaluate 
each step in box 1. These steps offer an introduction 
to DAGs and available algorithmic approaches.15  32 
Implementing these steps does not require software, 
but some tools can help construct DAGs to ease 
the process further.33  34 For each suggested step, 
we describe building a DAG with examples. In our 
example, the effect of heavy alcohol use on death is 
investigated, and we will consider both a prospective 
and retrospective case when a dataset might be present 
or not.

While these steps represent an idealised scenario, 
the circumstances of how and when DAGs can be 
used vary greatly. Therefore, the following steps are 
intended to illustrate generally how these graphs 
can help researchers rather than proscribe how they 
should be used.

Step 1: Identify the target population and define the 
question, with precise definition of the exposure or 
treatment and outcome of interest
This step is to agree on the target population of 
interest. Next, the exposure (ie, the potential cause—
eg, a behaviour, medical intervention, or risk factor 
of interest) and outcome (ie, presence or absence of 
disease) should be defined, and the specific causal 
question of interest, such as the average treatment 
effect in the population, can be agreed on. The 
parameter implied by the casual question is often 
termed the “estimand,” which is what we are interested 
in estimating.35-38 These aspects of the study should be 
reported to readers.

Example
Our example considers the effects of alcohol use on 
death. However, that question can be more specific. 
In other words, the exposure needs to be defined 
precisely, for example, as a diagnosis of alcohol use 
disorder, which acts as a measurable proxy of heavy 
alcohol use, and the outcome defined as the risk of 
mortality at five years among individuals aged 18 years 
or older. Our target population is the whole population 
of those of drinking age in the UK. The estimand we 
are interested in estimating is the average treatment 
effect in those who are treated, which is the effect of 
comparing everyone with alcohol use disorder to the 
same group if, counter to fact, they had not had alcohol 
use disorder.

Step 2: Identify all variables involved in the causal 
effect of interest by reviewing the literature and 
discussing it with subject matter experts, including 
those familiar with constructing directed acyclic 
graphs
Once the question of interest has been agreed on, the 
construction of most DAGs will start with the exposure 
and outcome. We also recommend adding a selection 
node, which should correspond not only to remaining 
in a cohort study over time but also to the criteria used 
to define the target population (fig 5). The confounders, 
colliders, mediators, and variables related (directly or 
indirectly) to the exposure or the outcome can then be 
added based on either literature supported evidence 
or expert input from the subject matter. As a practical 
recommendation, one can include all known causes of 
exposure, outcome, and selection in the DAG.6 39 Then, 
one should articulate the causal mechanisms among 
the selected variables by adding arrows between each 
included variable and consider whether there are any 
variables missing from the DAG that have direct causal 
effects in two or more variables already included in the 
DAG. If so, such missing variables should be included, 
and their causal mechanisms with the other variables 
in the DAG should be articulated. At this stage, there 
are likely to be variables that cannot be measured 
but should still be included in the DAG. Importantly, 
arrows that are omitted between variables encode 
strong assumptions that direct causal effects do not 
exist.

Age (confounder)

Socioeconomic
position

(confounder)

Heavy
alcohol use
(exposure)

Selection
into study

(S=1)*

Death
(outcome)

Fig 5 | Example of selection shown in a directed acyclic graph from figure 1 with the 
addition of selecting on age 65 years or above. Socioeconomic position and age are 
confounders, and mortality is the outcome of interest. This figure includes a node 
highlighting selection into the study and potential bias that can result from adjusting 
for this variable. *Selection (S) into study denotes restricting to S=1 (ie, to a single 
level of the variable selection) 

Box 2: Recommendations for using directed acyclic graphs in applied health 
research (Tennant et al 2021)7

• Associations of interest and estimands should be stated in the study’s aims
• Studies should report directed acyclic graph for each association of interest
• Directed acyclic graphs should include all relevant measured and unmeasured 

variables
• Nodes should be arranged visually so that all edges flow in the same direction
• Edges should be assumed between all nodes unless there is a strong reason to 

assume otherwise
• Minimum sufficient adjustment sets should be clearly stated
• Estimates using the minimally sufficient adjustment set, or the nearest available 

approximation, should be reported
• Alternative adjustment sets should be justified and reported separately

6 doi: 10.1136/bmj-2023-078226 | BMJ 2025;388:e078226 | the bmj
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For prospective observational studies, DAGs can 
inform the minimal set of needed variables to condition 
on and, therefore, that should be collected. In a 
retrospective study, the graph is ideally constructed 
before identifying the dataset or determining which 
variables are available. In other words, building the 
DAG based on the assumed causal structure and then 
identifying a dataset that suffices for bias adjustment. 
However, in a practical sense, many researchers might 
want to answer a question with data that have already 
been collected. In this case, DAGs might also be useful 
for understanding the implications of available and 

omitted variables, thereby helping researchers to 
understand the limitations of this already available 
dataset. For instance, if a DAG suggests that a 
retrospective study using a particular dataset is 
unlikely to have data on a key source of confounding, 
researchers can consider whether the question can 
be reliably answered with available data or whether 
sufficient sensitivity analyses and quantitative bias 
analysis,40-42 aided by the graph, can be designed to 
better answer the question with the variables at hand. 
In this case, we suggest building a graph as described 
above and noting in the DAG which variables are 

S

U

Socioeconomic
position

(confounder)

Family history
of alcohol use

Peers’
alcohol use

Heavy
alcohol use

Care
access Smoking

Alcohol use
disorder (exposure)

Mortality at five
years (outcome)

S

Socioeconomic
position

(confounder)

Family history
of alcohol use

Heavy
alcohol use

Care
access

Alcohol use
disorder (exposure)

Mortality at five
years (outcome)

S

Socioeconomic
position

(confounder)

Family history
of alcohol use

Heavy
alcohol use

Care
access

Alcohol use
disorder (exposure)

Mortality at five
years (outcome)

Alcohol use
disorder (exposure)

A

B

C

D

Mortality at five
years (outcome)

Fig 6 | Construction of a directed acyclic graph. (A) The process starts with defining the exposure (ie, a cause, such as 
a behaviour or medical intervention) and outcome (ie, presence or absence of disease) of interest. (B) Initial graphs 
can be constructed by using expert knowledge and previous studies to inform variables that are related to both the 
exposure and outcome, but also other variables. (C) These variables can then have causal effects indicated explicitly 
by adding arrows. (D) Refinement and consensus help complete the graph, including all relations between the 
variables, exposure, and outcome. U=unmeasured and possibly unknown confounders; S=selection (S=1 is selection 
into the study implied by the box around the S node)
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missing so that adjustment sets can be searched within 
measured variables. 

Example
Building the DAG begins by outlining the exposure-
outcome effect of interest (fig 6A); at this stage, it is 
worth involving other experts, including other social 
scientists, substance use specialists, psychiatrists, 
and epidemiologists. Variables that have a relation 
with the exposure of interest and alcohol use disorder 
can then be added, including a selection node. In 
this example, expert knowledge and the literature 
suggest that four variables affect the diagnosis of 
alcohol use disorder: family history of alcohol use, 
socioeconomic position, care access, and alcohol 
use. Placing these four variables on the DAG, we can 
draw arrows to illustrate the causal assumptions (fig 
6B and fig 6C): 

• Family history affects socioeconomic position and 
alcohol abuse;

• Socioeconomic position affects care access and 
alcohol use;

• Care access affects alcohol use disorder diagnosis 
and mortality at five years;

• Alcohol use affects alcohol use disorder diagnosis 
and mortality at five years; and

• Care access affects selection into the study. 

It is worth reiterating that not including a variable 
in the DAG is equivalent to assuming that such an 
omitted variable does not have a direct causal effect on 
any pair of variables already included in the DAG, and 
any omitted arrows imply that there is no direct causal 
effect between the pair of variables; these are strong 
assumptions.

Step 3: Develop the directed acyclic graph with 
additional experts until consensus is reached, and 
include consensus DAG in any pre-registration
The first draft of a DAG among a small group of 
researchers might not consider a wider array of 
variables that could be important. Critical connections 
between variables might also be missed. We suggest 
collaborating with a larger group of experts and 
potentially including at least one person with 
experience in building and using DAGs. It could take 
some iterations until the consensus DAG is reached. 
The consensus graph should be included in relevant 
pre-registration to ensure that the assumptions 
encoded in the graph are defined before analysis and 
are not dependent on data availability or results of 
statistical analyses.

Since our DAG started with the exposure, outcome, 
a selection node, and all known causes of at least 
one of them, the consensus DAG contains the 
confounding and selection structure according to 
the researchers’ assumptions. This approach allows 
use of the consensus DAG to identify variables for 
both confounding and selection bias adjustment in 
accordance with the causal assumptions encoded in 
the DAG.

Example 
The study team should review the initial DAG and assure 
that everyone involved is satisfied that all relevant 
variables are present (possibly including unmeasured 
variables) and all assumed causal effects are depicted. 
In this example, iteration identified a few additions to 
the graph (fig 6B). Firstly, the team chose not to ignore 
smoking, the impact of a person’s peers’ alcohol use, 
and the association between socioeconomic position 
and alcohol use. This decision, therefore, meant 
adding smoking and peers’ alcohol use and arrows 
between socioeconomic position and alcohol to the 
graph (fig 6D). 

Further, it was believed that omitting the direct 
arrow from socioeconomic position to mortality from 
the DAG was too strong an assumption because it 
is highly plausible that this effect is mediated by 
variables not included in the DAG. The team continued 
to consider variables likely to influence selection; 
however, they decided not to add any additional 
arrows to the selection node. Lastly, we explicitly 
acknowledged potential unidentified and unmeasured 
confounders (U) of our exposure-outcome association. 
For instance, familial support might be a variable that 
would reasonably cause the exposure, outcome, and 
selection given our study interest in those aged 18 
years or older. These confounders were subsequently 
added to the updated consensus graph (fig 6D).

Based on the consensus DAG, the team determined 
a minimally sufficient adjustment set (ie, the set of 
variables necessary to remove bias from confounding, 
assuming that the graph is correct and the node U on 
fig 6D does not truly exist). This example had two sets: 
(1) socioeconomic position, care access, and heavy 
alcohol use; and (2) care access, heavy alcohol use, 
and family history of alcohol abuse. These sets can be 
used to identify a dataset containing some reasonable 
measurement of the variables that we identified as 
necessary for our analysis. At a minimum, this dataset 
would require variables for diagnosis of alcohol use 
disorder, mortality, socioeconomic position, access to 
care, alcohol abuse, and family history of alcohol abuse. 
If a dataset is already in hand, investigators can choose 
a preferable adjustment set—for instance, if there is a set 
with minimal missing data. Figure 6D has an added arrow 
from U, the potentially unmeasured variable (eg, familial 
support). If investigators believed that the presence of U 
was very likely, and that U is a variable that should be 
accounted for, then this would suggest that there is no 
minimally sufficient adjustment set based on measured 
variables. Either information on familial support 
would need to be obtained, or additional sensitivity 
analyses would be needed to evaluate the impact of the 
unmeasured variable on the outcome (see step 6).

Step 4: Identify variables for data collection or 
the appropriate dataset based on the consensus 
directed acyclic graph, and if already collected data 
are used, consider which variables affect selection
Ideally, DAGs should inform the dataset and variables 
used, not vice versa. Thus, data should be collected 
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only once the graph is constructed in a prospective 
study. However, this approach could have practical 
limitations. In the case of a retrospective study, a 
dataset might already be identified or in hand for 
analysis.

Once consensus is reached, if data are not collected 
prospectively, selection into the study should be 
revisited. Where a dataset is already in hand before 
the graph is created, it will be particularly important 
to draw assumptions about selection into the study 
to understand how the formation of the dataset has 
created potentially biased relations. For instance, if the 
dataset identified for use is only among those with low 
socioeconomic position, that should be accounted for 
by adding an arrow from socioeconomic position (if on 
the DAG) into the selection node. 

Example
Using the consensus DAG from step 3, we identified two 
minimally sufficient adjustment sets (socioeconomic 
position, care access, and heavy alcohol use; or care 
access, heavy alcohol use, and family history of alcohol 
abuse). We also posited that an unmeasured variable, 
familial support, might exist. These variables should 
then be collected prospectively to adjust for in the 
analysis. If a dataset already exists, ideally it is chosen 
because it has the requisite variables already collected. 
In this case, investigators should also evaluate any 
additional variables, how they affect selection, and 
how they are causally related to the other variables in 
the DAG—particularly those in the minimally sufficient 
adjustment set. For instance, if it was decided that 
using US Medicaid data was useful it would be 
important to acknowledge that socioeconomic position 
would have an arrow into selection.

Step 5: Choose analysis methods, measures of the 
outcome and exposure, and covariates based on 
those defined by the research question (step 1) and 
the consensus directed acyclic graph (step 3)
The analytical model should be based on the consensus 
DAG, and any deviations should be explained. For 
example, if the minimum adjustment set is not fully 
measured, state which key variables were omitted and 
methods to overcome these omissions.

Step 6: Based on variables that are unavailable or 
prone to measurement error, identify sensitivity 
analyses that can quantify the likely influence of 
unmeasured variables or measurement error
When one or more covariates have been measured 
with error, a statistical adjustment might only 
partly eliminate bias, thus leading to residual bias 
in the estimates. Although measurement error can 
be incorporated in the DAG,43  44 this is rarely done 
in practice because it would greatly complicate 
the graph, and the error structure is rarely known. 
Researchers typically draw the graph as if variables 
had been perfectly measured while acknowledging 
that this assumption is, at best, an approximation. A 
simple sensitivity analysis to explore this potentially 

erroneous assumption might use a wider covariate set, 
for example, for confounding adjustment, including 
the common cause and mediators of its effect on the 
exposure or the outcome (of course, while avoiding 
adjusting for colliders or mediators of the effect 
of the exposure on the outcome). Another simple 
sensitivity analysis would include measured proxies 
for unmeasured covariates in the adjustment set.6

Measurement errors in the exposure and outcome 
can also influence the results. Independent (ie, error 
sources in exposure and outcome are independent) 
and non-differential (ie, error sources in treatment 
are independent of the true outcome, and vice versa) 
error will typically, but not always, attenuate the 
effect estimate. This bias can be analytically corrected 
using modelling assumptions about how the sources 
of error affect the exposure and outcome.45 Such 
approaches can also be applied to measurement 
errors in covariates. Other forms of measurement error 
(dependent or differential) are more difficult to adjust 
for and require more sophisticated methods and often 
strong assumptions.

Example
The penultimate step is to consider measurement error 
and sensitivity analyses. Since the DAG has helped to 
find a minimal set of needed variables, investigators 
can focus on analyses to explore the potential impact 
of measurement error.46 For example, if the measure of 
heavy alcohol use comes from self-reported responses 
to questions asked during a clinical encounter, we 
might think that there is a level of mismeasurement 
in our exposure variable, and we can potentially 
correct this mismeasurement with validation data. 
Furthermore, for variables with that are potentially 
mismeasured or completely unmeasured, but are 
believed to be important, sensitivity analysis methods 
such as quantitative bias analysis47-49 can be used to 
evaluate the alcohol-abuse-mortality association in 
the presence of multiple different values. In effect, 
this approach will allow us to query the impact of an 
effect under better measurement of variables or while 
also including unmeasured variables. Examples of 
this include, for instance, evaluating the exposure-
outcome association conditioning on peers’ heavy use 
of alcohol or family history, which might be difficult 
to obtain information prospectively or completely 
absent and impossible to retrieve in retrospective data 
analysis. Evaluating the impact of mismeasured of 
unmeasured variables using a bias analysis approach 
would allow us to gain information about the effect 
of interest, assuming the structure of the DAG, and 
illustrate how bias from these variables might affect 
our results.

Step 7: Include the directed acyclic graphs in 
future publications and refer to it when describing 
adjustment sets and sensitivity analyses
The DAG used to guide the study’s development should 
be included in future publications in either the main 
document or supplementary material. The graph can 
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then explain analytical decisions to justify a particular 
dataset’s use and analysis measures, motivate methods 
to account for measurement error and unmeasured 
variables and necessary sensitivity or quantitative 
bias analyses. In addition to the graph, code that 
allows recreating it can be included to simplify the 
recreation of the graph for readers. Examples from the 
DAGs in this paper are included in web appendices 
2 and 3. These actions will both explain underlying 
assumptions to readers and serve as a starting point for 
an improved DAG that can be used for incorporating 
new knowledge.

Example 
In our example, we would at the very least include 
the graph in supplemental files and refer to it when 
describing covariate selection. Using the graph will 
inform future researchers, help justify decisions, 
and clarify the underlying rationale. Moreover, it will 
help future researchers build their own DAGs that 
incorporate different assumptions or new knowledge 
around the impact of heavy alcohol use on mortality.

Drawbacks and limitations of directed acyclic graphs
As with any research method, the use of DAGs has 
limitations, the most important of which is that they 
merely reflect our assumptions. One main strong 
assumption is the variables we choose not to include on 
the graph. For example, omitting relevant confounding 
variables can result in residual confounding (eg, 
because a true confounding path has been missed 
from a graph) or misrepresent the causal mechanisms 
between confounding variables (eg, an arrow has been 
missed from a graph), leading to biased estimates. 
DAGs simplify real world mechanisms, so there will 
rarely be a perfect or completely correct graph, but it 
is important to consider the implications of excluded 
nodes and arrows. Furthermore, while DAGs are 
useful for identifying adjustment sets that might be 
sufficient to eliminate bias (more precisely, to achieve 
exchangeability), they cannot reduce or verify other 
key assumptions required to make causal inferences 
(eg, causal consistency and positivity). 

Moreover, their application for bias adjustment is 
limited because they merely allow researchers to be 
explicit about the assumptions they are willing to make 
to guide data analysis and interpretation. In terms of 
assessing whether such assumptions are true, the most 
DAGs can do is imply expected patterns of statistical 
independence. These patterns can potentially be 
empirically verified and, if violated, would serve as 
evidence that the constructed graph is incorrect—a 
type of falsification. However, the lack of evidence 
against a DAG is, at best, partial because the statistical 
patterns implied by the graph are often compatible 
with several different causal structures. Showing that 
a specific DAG is inconsistent with the data might 
provide little guidance on improving it; furthermore, in 
finite samples, such conclusions depend on arbitrary 
significance cut-off thresholds and power to detect 
associations, as well as on correctly specifying the 

models describing the association patterns among the 
variables. 

DAGs are non-parametric, meaning that they do not 
need to make assumptions about the data-generating 
function that links the variables. This strength is 
important because it means that conclusions from the 
graph depend only on its structure. However, using 
DAGs to describe the implications of different functional 
forms (eg, the difference between a threshold effect 
and a linear effect) is challenging and limits their use 
for conclusions beyond the dichotomy of “any bias 
versus no bias” to assess the likely magnitude of the 
bias. Finally, it can be challenging to correctly specify 
the temporal ordering of nodes in a DAG.

DAGs can help precisely define assumptions, 
but there are some instances where they can be 
inappropriately used or are unhelpful. Firstly, 
these graphs are not conceptual diagrams or mind 
maps meant to illustrate processes (eg, a diagram 
of intracellular processes or chemical reactions). 
Secondly, DAGs restricted in advance to measured 
variables are inadequate because such graphs would 
never, by construction, suggest that relevant variables 
were not measured. Thirdly, overly simplified graphs 
can misguide analysis; for example, if each covariate 
is drawn only with arrows into the exposure and the 
outcome, without including any arrows between the 
covariates, investigators would fail to identify colliders 
that should not be adjusted for. Furthermore, boxes 
around nodes on a DAG should generally indicate 
conditioning via statistical adjustment or stratification 
(box 1). Drawing boxes or shapes around nodes for 
other reasons can make the graphs ambiguous and 
difficult to read and interpret; thus, boxes or other 
shapes around variables are often avoided unless 
specifically drawn to indicate conditioning. Lastly, 
double headed arrows or arrows from a node to 
another edge, or vice versa, are often discouraged 
because double headed arrows can violate the acyclic 
property of the DAG and make relations ambiguous. 
Although in some contexts, double headed arrows 
denote unmeasured confounding between two nodes, 
explicitly including the unmeasured confounder in the 
graph is often clearer. Arrows leading into or out of an 
arrow, although potentially intuitively appealing in 
some cases, have no formal meaning within the theory 
underlying these graphs. Such arrows might also 
convey ambiguity about relations between variables 
and hamper the ability to determine causal and biasing 
paths from the graph.20

Furthermore, DAGs can become complicated and 
dense in real world applied studies if they have many 
nodes and arrows. Although software can help make 
such examples tractable, in some cases, the number of 
variables is very large, thus making it nearly impossible 
to draw a plausible graph. In such cases, alternative 
tools that do not require explicitly drawing a full graph 
might be useful. For example, for covariate selection 
for confounding adjustment, the disjunctive cause 
criterion might be used, which only requires knowing 
if the covariate is a cause of the exposure or outcome.6 
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However, this criterion assumes that the pool of 
variables from which the covariates will be selected is 
a subset sufficient for confounding adjustment. This 
assumption is difficult to justify without the full DAG. 
Therefore, this method can be complemented with 
tools that assess whether a candidate covariate set is 
adequate.50 Alternatively, interactive procedures allow 
researchers to build only as little as needed of a DAG 
for selecting covariates (thus reducing the number of 
assumptions needed and automated covariate selection 
procedures).51 These examples illustrate that, even 
when drawing a full graph is impractical, principled 
alternatives for covariate selection are available, which 
should be preferred over simply selecting pre-exposure 
variables that are available in the dataset.52

Reporting directed acyclic graphs
Reporting DAGs in empirical papers can be extremely 
helpful for readers, reviewers, and editors. They can 
also be reported in pre-registration that investigators 
undertake, which can assure readers that the causal 
structure was considered well before the data and 
analysis were agreed on. This reporting can help avoid 
bias and spurious statistical signals from cherry picking 
analyses or adjustment sets (eg, Andrew Gelman’s 
garden forking paths53). When empirical papers are 
reported, DAGs can be presented as part of the analysis 
plan. They can either be included as a primary figure or, 
more typically, contained in the supplement to state the 
study’s assumptions. Authors can include a list of people 
directly involved in building the graph and any literature 
supporting the relations presented along with the graph 
and reproducible code to create it (if software was used).

DAGs can help reviewers and editors understand 
a study, because they make explicit the assumptions 
underlying design, data collection, and analysis. Many 
empirical papers implicitly assume a causal structure. 
Including a DAG makes this underlying causal structure 
explicit and allows readers to assess the plausibility 
of assumptions. Thus, it can be helpful for reviewers 
and editors to consider requesting these graphs as part 
of peer review. Box 1 outlines questions that readers 
could consider when interpreting a DAG.
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